
Reinventing Grep with Parabix Technology

January 18, 2020

1 Introduction
Searching through text files for strings matching a particular pattern is a com-
mon task in information processing. The software tool grep was developed by
Ken Thompson for this purpose and made available with Unix Version 4 in
1973. [McI87]. The name grep arises from the g/re/p command of Thompo-
son’s ed editor meaning globally search for regular expression and print. While
Thompson’s initial version did not support the regular expression features of
alternation and grouping, this was remedied by the development of egrep by
Alfred Aho in 1975 [Hum88]. Andrew Hume improved egrep performance by
incorporating the Boyer-Moore algorithm for fixed strings in 1988. Free and
open source software versions of grep were developed by the GNU and BSD
projects. Bitwise parallel NFA simulation was introduced with agrep [WM92]
and nrgrep [Nav01].

All of these grep implementations are fundamentally sequential in nature,
primarily building on automata theory techniques involving deterministic or
nondeterministic finite automata (NFAs or DFAs). In general, the searches
proceed byte-at-a-time updating the automaton state (or set of states in the
case of NFAs) with each step. The byte-at-a-time processing model was well
matched to processor capabilities at the time of initial grep development, but
processors have evolved to be able to process many bytes in parallel using short
vector SIMD instructions. For more than two decades, processing 16 bytes at
a time has been possible with the Intel SSE instructions, Power PC Altivec
instructions or ARM Neon instructions. In the last several years, Intel has
further increased SIMD register width, first with 32-byte AVX2 technology and
most recently with 64-byte AVX-512 technology.

Parabix technology is a programming framework under development by
our research group at Simon Fraser University to take advantage of the wide
SIMD registers for streaming text processing applications such as grep [Lin+12].
Rather than focussing on byte-oriented processing, however, it uses the concept
of bitwise data parallelism. In this model, bit positions within SIMD registers
are associated with byte positions in input data streams. With AVX2 technol-
ogy, for example, the goal is to process 256 bytes at a time with the 256-bit
SIMD registers. We have applied Parabix technology to accelerate Unicode

1



transcoding [Cam08], XML parsing [Cam+11; Med+13] and regular expression
search [Cam+14], while other groups have applied related techniques to accel-
erate RNA protein search [PMG10] and JSON parsing [Li+17] .

As a showcase of the Parabix framework, icgrep is a new grep implementation
fundamentally built using bitwise data parallel techniques. With our promis-
ing performance results in icgrep 1.0 [Cam+14], we have focused on building a
fully modern grep with broad support of extended regular expression features
including the lookaround assertions of Perl-compatible regular expressions and
the full set of Unicode level 2 regular expression features defined by the Uni-
code consortium [DH16]. We believe icgrep is the first grep implementation
to achieve this level of Unicode support. In addition, we have also focused on
incorporating educational features so that users can explore and display various
transformations that take placed during regular expression processing and/or
Parabix compilation.

From a performance perspective, we have considered three important aspects
for modern software tools. One aspect is the use of fundamentally parallel
algorithms as well as the systematic use of SIMD and multicore parallelism. The
second aspect is to focus on scalability, that is to arrange to automatically take
advantage of both available SIMD register width and available cores to achieve
performance that scales with these resources. While there is still considerable
work to do in the development of our framework, icgrep does indeed demonstrate
such scalability, even for single file search. From this perspective, we think
that icgrep represents an interesting initial data point with respect to software
tool scalability. Finally, we also have focused on consistent and predictable
performance, particularly in response to the rise in denial-of-service attacks that
exploit pathological cases for many existing regular expression tools [KRT13].

While research continues, our goal is to introduce icgrep as an important
practical contribution that pushes the boundaries on both the performance and
capability of grep search software. As with all open source software projects,
we expect to refine the software over time and invite collaborators to join our
effort.

2 Parabix Regular Expression Matching

References
[McI87] MD McIlroy. “A Research Unix reader: annotated excerpts from

the Programmer?s Manual, 1971–1986 (PDF)(Technical report)”.
In: CSTR. Bell Labs 139 (1987).

[Hum88] Andrew Hume. “A tale of two greps”. In: Software: Practice and
Experience 18.11 (1988), pp. 1063–1072.

[WM92] Sun Wu and Udi Manber. “Agrep–a fast approximate pattern-matching
tool”. In: Usenix Winter 1992 Technical Conference. 1992, pp. 153–
162.

2



[Nav01] Gonzalo Navarro. “NR-grep: a fast and flexible pattern-matching
tool”. In: Software: Practice and Experience 31.13 (2001), pp. 1265–
1312.

[Cam08] Robert D Cameron. “A case study in SIMD text processing with
parallel bit streams: UTF-8 to UTF-16 transcoding”. In: Proceedings
of the 13th ACM SIGPLAN Symposium on Principles and practice
of parallel programming. ACM. 2008, pp. 91–98.

[PMG10] Robert J Peace, H Mahmoud, and James Robert Green. “Exact
string matching for MS/MS protein identification using the Cell
Broadband Engine”. In: CMBES Proceedings 33 (2010).

[Cam+11] Robert D Cameron et al. “Parallel scanning with bitstream ad-
dition: An xml case study”. In: European Conference on Parallel
Processing. Springer. 2011, pp. 2–13.

[Lin+12] Dan Lin et al. “Parabix: Boosting the efficiency of text processing
on commodity processors”. In: IEEE International Symposium on
High-Performance Comp Architecture. IEEE. 2012, pp. 1–12.

[KRT13] James Kirrage, Asiri Rathnayake, and Hayo Thielecke. “Static anal-
ysis for regular expression denial-of-service attacks”. In: Interna-
tional Conference on Network and System Security. Springer. 2013,
pp. 135–148.

[Med+13] Nigel Medforth et al. “icXML: Accelerating a commercial XML
parser using SIMD and multicore technologies”. In: Balisage: The
Markup Conference. 2013, pp. 6–9.

[Cam+14] Robert D Cameron et al. “Bitwise data parallelism in regular ex-
pression matching”. In: 2014 23rd International Conference on Par-
allel Architecture and Compilation Techniques (PACT). IEEE. 2014,
pp. 139–150.

[DH16] Mark Davis and Andy Heninger. “Unicode regular expressions”. In:
Unicode Technical Recommendation 18 (2016).

[Li+17] Yinan Li et al. “Mison: a fast JSON parser for data analytics”. In:
Proceedings of the VLDB Endowment 10.10 (2017), pp. 1118–1129.

3


